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MULTIDIMENSIONAL MODULATION AND CODING
FOR BANDLIMITED DIGITAL CHANNELS

by
E.Biglieri and M.Elia

Dipartimento di Elettronica - Politecnico di Torino
Corso Duca degli Abruzzi 24 - I-10129 TORINO (Italy)
Telephone: +39-11-5567230 Telex: 220646 POLITO-I

ABSTRACT

A class of multidimensional signals, based on what
we call Generalized Group Alphabets, is introduced,
and its basic properties are derived. The combina-
tion of Generalized Group Alphabets and coding 1is
also examined: two coding schemes are considered,
viz., Ungerboeck's scheme for combination with
convolutional codes, and Ginzburg's scheme for
combination with block codes. The performance of
these schemes makes them attractive for transmis-

sion over bandlimited digital channels.
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< Our research activity during the period covered by this report was
v
',? devoted to the design of multidimensional codes for bandlimited digital
ﬁuf channels. The goal is to achieve a high efficiency in the use of the
'iff available spectrum through trellis or block codes that operate in a
:-' ) multidimensional signal space.
-
o In particular, our attention was focused on the algebraic properties
::: of a class of multidimensional signal sets, which we call '"Generalized
e Group Alphabets". Further details about this project can be found in the
T enclosed manuscript, which was submitted for publication in the IEEE
ﬂ:% Transactions on Information Theory.
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family. After a description of the main features of these alpha-
bets, we show how they can be used in conjunction with error
control codes; the concept of fair partition will be introduced,
and some of its relevant properties described. Finally, we pro-

vide some examples of actual designs.
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I1. GENERALIZED GROUP ALPHABETS

Consider a set of K n-vectors X = {X;,...,Xg}, called the
initial set, and L orthogonal n x n matrices S),..., §; that
form a finite group G under multiplication.

Definition 1

The set of vectors GX;, GX;, ... ., GXg obtained from the action
of G on the vectors of the initial set is called a Generalized

Group Alphabet (GGA). G is called its generating group.

Definjtion 2
A GGA is called separable if the vectors of the initial set are
transformed by G into either disjoint or coincident vector sets,
i.e.,

] j#k

ng N GXy =
ng j=k
1f |JIX}| denotes the Euclidean length of a vector X, the

quantity ||X||? is proportional to the energy of the signal asso-
ciated with X for transmission over a continuous channel. Since
an orthogonal matrix transforms a vector into one with the same
length, the signals associated with a GGA have as many energy
levels as there are in the initial set. The special case of a GGA
with K=1, and hence only one energy level, was extensively
studied in [7].

Definition 3
A GGA is called regular if the number of vectors in each subal-
phabet QXj. j=1,...,K, does not depend on j, i.e., each vector of

the initial set is transformed by G into the same number of

distinct vectors. A regular GGA is called strongly regular if
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5 each set QXJ contains exactly L distinct vectors.

e

:E The following result stems directly from the definitions.

vy

; Proposition 1

The number M of vectors in a regular GGA is a multiple of K. If

& GGA is strongly regular, then M=KL.

218

'N Hereafter we exhibit four examples of these alphabets. Notice
;t that for K=1 every GGA is regular, but not necessarily strongly
:; regular [7,16].

7

P Alphabet 1 (Asymmetric M-PSK: 2 dimensions, 1 energy level)

;S Choose an initial vector X = (cosd, sin®), & a given constant, an
‘g integer M=2H, and consider the group of 2 x 2 orthogonal matrices
L of the form RiT}, 1=0,1, ... , M-1, j=1,2, where

3

o cos(2n/M) sin(2a/M)

-E R =

» | -sin(27/M) cos(2n/M)
g_ , and
o o0 1

P T =

- 1 o

2 It is seen that the effect of R on a 2-dimensional vector is to
j rotate it by an angle 2w/M, and the effect of T is to exchange
': its components. This group has 2M elements, and gives rise to a
;: separable alphabet of M or 2M vectors, according to the choice of
”j the initial vector. Notice that the alphabet is strongly regular
.E: only when it has 2M elements (asymmetric M-PSK [13,14])).
’.
.: Alphabet 2 (4 dimensions, 1 energy level)
:: Consider the group of matrices which act on a four-dimensional
e initial vector by permuting its components and replacing them
, with their negatives. This group has 412% elements. If the ini-
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Eg tial vector is X;=(a,a,a,0), a=1/J3, the resulting (separable)
oY alphabet has M=32 distinct unit-energy vectors (see Fig.l).

Ve Alphabat 3 (2 dimensions, 3 energy levels)

(G0

e Our third example is shown in Fig.2. Points 1,2,3 and 4 denote
t&: the four vectors in the initial set. The matrices generating the

code are those associated to plane rotations by multiples of w/2.
The resulting (strongly regular, separable) alphabet is the

conventional 16-QAM.

Alphabet 4 (4 dimensions, 2 energy levels)
This alphabet which has two energy levels, K=4, and M=128, |is

obtained from the initial set of vectors

[
o
0
0
o o o O

with ¢=0.389 and b=0.939. If we apply to this initial set the
same matrix group which generates Alphabet 2, we get a

separable alphabet with 128 vectors (see Fig.3). Among them, 32

have energy 3c?, and 96 have energy b2+ 2c?. The average energy

': is 1.
\
k\
h]
FQ We consider now some distance properties of the elements of
@ a GGA. Choose a partition of it into m subsets Z,, Zosees Zpye
: For each subset Z;, we can define the intradistance set as the
set of all the Euclidean distances among pairs of vectors in Z;.
For any pair of distinct subsets Z;, Zj’ we define their
é; interdistance set as the set of all the Euclidean distances
F: between a vector in Z; and a vector in Zj.
o
..:J
Ry Definition 4
o The partition of a separable GGA into m subsets Z;,...,Z; is

o

-

called fair if all the subsets are distinct, include the same
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number of vectors, and their intradistance sets are equal.

We shall now exhibit a constructive method to generate fair
partitions of a GGA. Consider the generating group G of the GGA,
one of its subgroups, say H, and the partition of G into left

cosets of H. We have the following result.

Theorem 1

If the left cosets of the subgroup H are applied to the initial
set of a strongly regular GGA, this procedure results into a fair
partition of the GGA. Under the same hypotheses, if H is a normal

subgroup, then left and right cosets give rise to the same fair

partition.

Proof
Let S denote an element of gg not belonging to H, and SH the

corresponding left coset. If X;, Xj are two (not necessarily

distinct) vectors of the initial set, and Sh' Sy are two elements

of H, the intradistance set associated with the coset SH includes

the quantities
d%;(s, Sy, SK) 2 |l 8 Sy Xy - 8 5 Xy|I?

as Sy, Sy run in H, and X., X: run in the initial vector set. We
h k = i 3

have

d3;(S, Spy S0 = X7 + Ixyl? - 2 X] sfsT s 5, % =

= Ixgl® + Wxgli? - 2 X sE sy x,

where the superscript T denotes transpose.

As the right hand side of the last equation does not depend
on S, we have shown that the intradistance set associated with
the left cosets of H are independent of the coset. Moreover, if H

is normal, then right cosets and left cosets give rise to the

L P AL PR PLLE PR Ry S S Iy U i Al N PRI L S L L 3 A W W W M MY W
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same fair partition: in fact, normality implies that for every S

SH=HS. ®

The condition of strong regularity of the GGA can be
removed: but in this case it may happen that different cosets
generate the same element of the partition. Hence, some of the
cosets must be removed from consideration. Moreover, notice that
if H is a normal subgroup of G, then we do not need to
distinguish between left or right coset partitions. On the
contrary, if H is not normal, the partitions obtained from right

cosets may not be fair, as shown by the following counterexample.

Example 1
Let us consider the 4-dimensional alphabet generated by the

action of the natural matrix representation of the permutation
group S, on the initial vector (-3d4/2, - d4/2, d4/2, 3d4/2), d a
constant. Let us consider the partition induced by the subgroup H
of the matrices leaving invariant the fourth component of the
initial vector. This subgroup is isomorphic to §,. The left and
right coset partitions associated'with H are shown in Table 1. It
can be seen that the partition associated with right cosets is

not fair, because its intradistance sets are not equal.

.1

In some cases, we are interested to partition further

. n"-

every element Z; in the same number of subsets. We are lead to

[ 2
e

the concept of a chain partition.

Definition 5
The chain partition of a separable GGA is called fair if any two

elements of the partition at the same level of the chain include

| RN

the same number of vectors and have equal intradistance sets.
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left coset partition right coset partition
(-3d/2,- d/2, d4/2, 3d/2) (-3d/2,- d4/2, d/2, 3d4/2)
(- d/2,-3d/2, d/2, 34/2) (- d4/2,-34/2, d/2, 3d4/2)
« d/2,- d4/2,-3d/2, 34/2) ( d/2,- 4/2,-3d/2, 3d/2)
(-3d/2, d/2,- d/2, 34/2) (-3d4/2, d/2,- d4/2, 3d4/2)
(- d/2, d/2,-3d/2, 34/2) (- 4/2, d4/2,-3d/2, 3d4/2)
( d/2,-3d/2,- d4/2, 34/2) ( d/2,-34/2,- 4/2, 3d/2)
( 3d4/2,-3d/2,- 4/2, 4/2) ( 3d/2,- 4/2, d/2,-3d/2)
( 3d/2,- d/2,-3d/2, d/2) (- d4/2, 3d/2, d/2,-3d/2)
( 3d4/2, d/2,- 4/2,-34/2) ( d/2,- d4/2, 3d/2,-3d/2)
( 3d4/2,-3d/2, d/2,- d/2) ( 3d/2, d/2,- d4/2,-3d/2)
( 3d/2,- d/2, d/2,-3d/2) (- d4/2, d/2, 3d/2,-3d/2)
( 3d/2, d/2,-3d/2,- d/2) ( d/2, 3d/2,- 4/2,-3d/2)
(-3d4/2, 3d4/2,- d4/2, 4/2) (-3d/2, 3d/2, d/2,- d/2)
(- d4/2, 3d/2,-3d/2, d4/2) (- d/2,-3d/2, d/2,- d/2)
( d/2, 3d4/2,- d4/2,-34/2) ( d/2, 3d/2,-3d/2,- 4/2)
(-3d/2, 3d/2, d/2,- d4/2) (-3d4/2, d/2, 3d/2,- 4/2)
(- d4/2, 3d/2, d/2,-34/2) ( 3d4/2, d/2,-3d/2,- d/2)
( d/2, 3d/2,-3d/2,- d/2) ( d/2,-3d4/2, 3d/2,- d/2)
(-3d/2,- d4/2, 3d4/2, 4/2) (-3d4/2,- d/2, 3d/2, 4/2)
(- d/2,-3d/2, 3d4/2, d/2) (- d/2,-3d4/2, 3d/2, d/2)
( d/2,- d4/2, 3d/2,-3d/2) ( 3d/2,- 4/2,-3d/2, d/2)
(-34/2, d/2, 34/2,- 4/2) (-34/2, 3d4/2,- d4/2, 4d/2)
(- d4/2, d/2, 3d/2,-34/2) (- d/2, 3d/2,-3d/2, d/2)
( d/2,-3d/2, 3d/2,- 4/2) ( 3d4/2,-3d/2,- d/2, d/2)

Table 1 - Left and Right coset partitions of GGA
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For fair chain partitions we have the following theorem, whose

proof is straighforward and will be omitted.

Theorem 2
Consider a strongly regular GGA, and a chain of subgroups of its
generating group G, that is

Hy cH) cHyc ...cH =GC.

Use H,_ ;) and its left cosets to generate a partition of GGA.
Then, use H _; and its left cosets in Hg to further partition all
the sets of the previous partition. Repeat the procedure with
Hs.7, and so on, until H; and its left cosets in H, are used.

The resulting chain partition of GGA is fair.

A theorem concerning the interdistance sets sheds some

further light on the symmetry properties of GGA's.

Theorem 3

Let H be a normal subgroup of G. The partition of a strongly
regular GGA obtained by applying the left cosets of H to the
initial set X has the following property: The interdistance set
associated with any two cosets, say SiH and szg, is a function
only of the coset S3H, where S3 = SITSZ. and not of §;, S,

separately.

Proof

Let S; and S, denote two coset leaders. If X,, Xj are two (not
necessarily distinct) vectors of the initial set X, and Sphy Sy
are two elements of H, the distances among elements of the cosets

S,H and S,H includes the quantities
di5(Sy, Syu Spy Sy) 2 | 1Sy Xy - S,S Xyl

as Sp, Sy run in H and X,, Xj run in X. We have

0
.-..:'?‘I'.‘l

Aty o]




% 53
L}Ll.
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x

f_~
- _ T
n d15(8,. S5, Sy, Sy) = WxyH? + WXl - 2 X] sfsT s s, X =
K .-,

.':r::

L4
S = s+ xgllz - 2 xT SF sy sy,

7

\('
ot Finally, as H is a normal subgroup, we have

<,

)

Qﬂc S,H S,H = 5,5,H = S,H

g
:*Q: i.e., S3§ is another coset. ®
¥ +

- We now provide some examples of fair partitions of a GGA.
L ]
::: Consider first the rotation group which generates Alphabet 3 (see
t\ﬁ Fig.2) and its partition into the two cosets associated with the
) e
® rotations 0, =, and n/2, -n/2, respectively. The GGA 1is fairly
o partitioned into the two subalphabets {1,2,3,4,9,10,11,12} and
o {5,6,7,8,13,14,15,16}.
% Fig.1 shows a fair partition of the Alphabet 2 in four
‘,{: subsets of 8 vectors each. This partition is obtained as fol-
fii lows: denote by a the orthogonal matrix whose effect on a vector
'2?: is to cyclically shift its components to the right by one
D) position, and to change sign to the second component. Then the
y f\* set

5 H = {a’,a’,a%,a%,a*,0%,a%,a”}

he
N
LN
o is & cyclic normal subgroup of the group G generating the alpha-
bet, and its cosets generate the fair partition.
," s

e
'SQJ A fair partition of Alphabet 4 into 16 subsets of 8 vectors
'&Z each stems from the subgroup {I, -I}, where I is the 4 x &
b ]

:nf' identity matrix (see Fig.3). A fair partition of Alphabet 1 is
l. »

::: obtained by considering the two cosets of the subgroup (Ri}q;b. (

'.

0% |
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w&f




-«: g .
I 12
vl

Definition 6

N Let R be a left coset of G in the fair partition of a GGA, and Sg
N

~ an element of G. We define the distance profile [15) associated
e with R and SB as the polynomial in the indeterminate w:

-

5 2
o F(v, Sg, R)* I a(d?) wd
: 42
™

& where a(d?) is the number of elements of RX that have squared
N
N distance d? with respect to an element of the set SgRX.

08

1S

i Example 2

-~ Consider K=1, X,=(1, 0)T, and the group of plane rotations

>,

*l

-,

. cos(iw/2) sin(in/2)

.:: si. , 1-0’1’2’3

- -sin(in/2) cos(in/2)
’ The subgroup {S,, S,} is normal. The distance profiles are
'{ summarized in Table II.
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"
‘

~

:: r 1

" | R Sg F(w, Sg» R) |

. [ |
o J )
o l I
:‘ l {So» S,} S, 2w 42w I

o | {Se» S3) H bw? |

\

| {Sot Sg} 52 2V°+2V“ l

.

;‘" I {So’ Sg} S, 4w? |

- L {

: F !
S | I
; | {8, S,} So 2wo42w" |
h_-: l {Sl, 53} 51 sz l
i: | {S:, S,} S, 2w 42w |
; | {S;, S,} Sy 4w? i
o L 1
o
A,’

:ﬁ Table II - Distance profiles for Example 2
L~
e
s
:? Definition 7
s
53 A fair partition of a GGA is called homogeneous if the set
B {F(w,S,R)}g¢c does not depend on R. It is called strongly homoge-
kv neous if F(w,S,R) does not depend on R for any S.
g T

o)

S

¢!

; Theorem 4
-} If G is a commutative group, all the partitions generated by its
ji subgroups are fair and strongly homogeneous.
-
9 Proof
Tﬁ Let H be a subgroup of G: this is obviously normal, so that the
f: partition induced by H is fair. Let Xy, XJ be two elements of the
‘i initial set X, S an element of G, Sy an element of BH. Then for

' any SgeG the computation of F(w, Sg, SH) involves enumerating the
"
N squared distances
B
»
o
e
]
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0SSy Xy - 5gSS;pXyh® = 0SSy Xy -8 S8 pxg)* =
= || sy X - sasmxjn2

which do not depend on S, and hence on the element of the fair

partition. -

Theorem 5

If H is a subgroup of G in a strongly regular GGA, the partition

generated by the left cosets of H is fair and homogeneous.

Proof

Let H be a subgroup of G. Then, the partition induced by the left
cosets of H is fair. Let X;, X; be two elements of the initial
set, S an element of G, Sy and S;g two elements of H. Then for

any SgeG the computation of F(w, Sg, SH) involves enumerating the

squared distances
s sy Xy - SgS SypXyli2 = Il sy Xy - 8T g5 sypx5)2 =
= Il sy Xy - SgSipXyli®

so that F(w,S;,SH) = F(v,S';,SH), and as Sg Tuns through G all
over G also S' = §T S$S dges. Thus, the assertion is proved.s
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III. MULTIDIMENSIONAL CODED SIGNALS. BLOCK CODES

We shall now see how the multidimensional alphabets described in
the previous section can be used in conjunction with codes to
further enhance their performance. In this section, we shall
focus our attention on block codes, while next section will be

devoted to convolutional (trellis) codes.

Hinai and Hirakawa [18] and V.V. Ginzburg [8) have recently
described constructions which make it possible to design alpha-
bets with an arbitrary signal distance and with a regular
structure, as insured by the algebraic properties of block codes.
Fig.4 shows Ginzburg's construction. The L block encoders
Ci,Cy,. ..»C accept source symbols, and output L blocks
(qu'q2j""'qu) of N symbols each. The modulator f maps each
L-tuple (qjl"°"qu)' j=1,...,N, into the vector

Xj 'f(qjl"”'qu)’ j- 1, s 9 N

chosen from a set A of M=M;...M] elements. This mapping is
obtained as follows. In the set A we define a system of L
partitions such that each class of the &-th partition includes
M; classes of the (2-1)-th partition, so that it will consist of
M(L)=MM;...M; signals. By numbering the classes of the (i-1)-th
level occurring 1in a class of the t-th level we can obtain a
one-to-one mapping of the set of classes of the (t-1)-th parti-
tion onto the set of integers {0,...,M;-1}. Therefore, if 944
are chosen in the set {0,...,Mg~1}, t=1,...,L, any L-tuple
(qj1'°"’qu) defines a unique value of the j-th elementary
signal xj-f(qjl....,qu) (see Figure S).

We have the following result [8]: the alphabet obtained has
a minimum squared Euclidean distance D? such that
D2 2 min ( 8jdy)
1se<L




where dl"'°'dL are the minimum Hamming distances of the L
block codes C;,...,C; , and 621 is the minumum squared Euclidean
distance between the symbols in each subalphabet of the i-th
partition.

Consider now Ginzburg's constructions based on generalized
group alphabets. By associating with each level the elements of
a fair partition (the concept of a fair chain can be used here),
all the subalphabets at a given level have the same minimum
distance. From the fair partition of Alphabet 2 described
before, we have &%,=2/3, and 62?;=2. Thus, |using the
(N,k,3) BHamming code on GF(4) (9 ,p.193-4] and the trivial
(N,N,1) code on GF(8), with N=(4™-1)/3, k=N-m, m2l, we have
D?22. The resulting alphabet has a rate

R=[5S(4™-1)-6m]l)/[ 4 (4% - 1))
and
D2log,M =10 - 12 m / ( 4™ - 1)

For example, choosing m=2 we get a rate R=1.05 and D?log,M 2 8.4;

with m=3 we get R=1.18 and D?log,M 29.4.

Using Alphabet 4, and the partition described, we have
8?1=2c?, and 82?7=8c?. The (18,15,4) extended Hamming code
[19,p.36] on GP(16) and the trivial (18,18,1) code on GF(8)
can be employed, providing a squared minimum distance D? 2 1.211.
This alphabet yields R=1.583 and D?log,M27.67.
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v IV. MULTIDIMENSIONAL CODED SIGNALS. TRELLIS (UNGERBOECK) CODES
a

We shall now see how an Ungerboeck codes [10] can be designed
using a multidimensional alphabet generated as described in Sec-
tion II. Such codes can be specified as in [17]. Each coded
symbol depends on k+v source bits, namely the block t=(a,,...,ay)
of k bits generated by the source, plus v bits preceding this
block. The v bits determine one of the N=2V states of the enco-
der, say o = (‘k+l' e ‘k+v)' a,=0,1. The encoder state for
the next coded symbol is obtained by shifting the a,'s k places
to the right, dropping the right-most k bits and inserting on the
left the most recent k source bits. The encoded symbol x depends

on 1t and o0; we write

x = f(1, o) (4.1)
where x is an element of a GGA. This encoding procedure can be
described using a trellis (Fig.6 shows a section of such a

trellis, obtained for v=2).

Although no formal proof exists, it is conjectured that a

good code should show a good deal of symmetry, to be reflected by

the structure of the function f in (4.1), or, equivalently, by

Qi the assignment of symbols to the branches connecting any pair of
._’,

-7 nodes in the code trellis (for further details see, e.g., [10],
." {11)). This can be obtained in our framework by assigning to the

) A

branches associated with each node the set of symbols obtained

o
s s

from a fair partition of a GGA. This is equivalent to the proce-

.
P ]

dure suggested in [10]) and called "mapping by set partitioning":

)
a

) thus, our procedure can be viewed as a systematic way to achieve

a set partitioning.

j The wmost widely used single parameter that specifies the
‘éE performance of these codes on the additive white Gaussian noise

o~ channel is the free distance. This can be computed using a

=
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generating function approach, which consists of enumerating all
possible distances between sequences of symbols associated with
paths in the trellis. In general [11] the generating function can
be obtained as the transfer function of a state diagram regarded
as a signal flow graph. The state diagram is defined over an
expanded set of N2=22V gtates. For the special case of a t—ellis
based upon a linear binary convolutional code, and a strongly
homogeneous fair partition of a GGA, the minimum distance can be
computed from a generating function obtained as the transfer
function of a state diagram including only N=2V sgtates. (See
Theorem 3 of [15)).

We shall describe two examples of designs of four-dimensio-
nal Ungerboeck codes. The first example originates from Alphabet
2. It has minimum distance 2a?=0.66. The fair partition described
before gives four subsets of 8 vectors each, with minimum intra-
distance 6a?=2. By choosing a 4-state trellis code with the
structure described in Fig.6, we get a squared free distance
6a?=2., If this figure is compared to the minimum distance a-
chieved by using two independent 4-PSK signals, which transmit
the same amount of information ‘over the same number of dimen-

sions, we see that an energy saving of 3 dB is obtained.

Consider now Alphabet 4. It has a minimum square distance
0.3. The fair partition described gives 16 subalphabets of 8
vectors each, with minimum intradistance 1.2. By using the 4-
state Ungerboeck code described in Fig.7, the squared free
distance obtained is df ,.®1.2. By comparing this to the minimum
distance obtained by using two independent 8-PSK signals, we see
that an energy saving of about 6 dB is obtained.
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#?i VII. CONCLUSIONS
o
j::::
y‘* In this paper we have introduced the concept of generalized
N group alphabets. The combination of these alphabets with block
o
o or trellis codes was also considered. Some actual designs show
$}: that consideration of GGA's may lead to transmission systems
r;r providing a good performance with bandlimited channels, at the
o price of a relatively modest complexity.
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E’\ Figure captions
nI
A
b Fig. Alphabet 2 and its fair partition
Fig. Alphabet 3 and its fair partition
Fig. Alphabet 4 and its fair partition
Fig. Ginzburg construction
Fig. An example of Ginzburg construction
Fig. 4-state Ungerboeck code for Alphabet 2
Fig. 4-state Ungerboeck code for Alphabet 4
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